DOI:
https://doi.org/10.38017/22487735.616Palabras clave:
atopía, colágeno, estrato corneo, hipersensibilidad tipo I, hipersensibilidad tipo IVResumen
Las dermatitis son patologías frecuentes en la consulta de pequeños animales, siendo una afección inespecífica que atenta contra el bienestar tanto de caninos como de felinos y afecta la dinámica de la familia tenedora de estos individuos. Dentro del grupo de dermatitis, la atópica se ha convertido en una afección de difícil diagnóstico y tratamiento. Se conoce que la dermatitis atópica canina (DCA) es multifactorial y depende de la predisposición genética de los individuos y de estímulos ambientales, los cuales pueden verse afectados por el cambio climático. La respuesta compleja inmunológica en caninos ha permitido comprender la dermatitis atópica humana, convirtiéndose en un modelo médico para investigación. Esta inflamación alérgica esta mediada por una respuesta de hipersensibilidad tipo I o IV, siendo similar en los caninos y humanos. Los mastocitos, células con importante presencia en la piel canina, facilitan el reclutamiento de los leucocitos, favorecen la adherencia y la diapédesis de dichas células, permitiendo que la respuesta inflamatoria sea exagerada. En la respuesta inmunológica intervienen citoquinas, factor de necrosis tumoral, natural killer, entre otros, que facilitan la comunicación entre la inmunología innata y la adquirida, conllevando a la compleja respuesta inmunológica y permitiendo que se presente la respuesta inmunomediada. Además, de la respuesta inmunológica individual, la DCA puede complicarse por contaminación secundaria de microorganismos, los cuales llevan a respuestas inmunitarias propias dependiente de su naturaleza. Este documento se propone exponer desde la conformación anatómica de la piel y la respuesta inmunitaria de esta, la presentación de la DCA.
Descargas
Citas
Ackerman, B. Schotland, E., Tamayo, M. y Martin-Reay, D. (2001). The infundibulum is epidermal, not follicular. Dermatopathology: Practice & Concept, 7, 396-398.
Akdis, C., Akdis, M., Bieber, T., Bindsley, J., Sen, C., Boguniewicz, M. y Eigenmann, P. (2016). Diagnosis and treatments of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immnulogy. Journal Allergy Clinical Immnunology, 118, 152-169
Almela Sánchez, R. M. (2014). Dermatología clínica en perros y gatos. Andalucia, España. IC editorial. (No. 636.708965076 A4D4).
Banks, W.J. (1993). Applied veterinary histology. 3 ed. Texas: Mosby Year Book. Inc.
Belkaid, Y. y Segre, J. A. (2014). Dialogue between skin microbiota and immunity. Science, 346, 954-959
Berker, M., et al C. (2017). Allergies–AT cells perspective in the era beyond the TH1/TH2 paradigm. Clinical Immunology, 174, 73-83.
Bradley, C., Morris, D. y Rankin, S. (2016). Longitudinal evaluation of the skin microbiome and association with microenviroment and treatment in canine atopic dermatitis. Journal Investigation Dermatology, 136, 1182-1190.
Broide, D. y Sriramanao, P. (1998). Inhibition of eosinophil rolling and recruitment in P-selectin-and ICAM-1-deficient mice. Blood, 91, 2847-2856
Castellanos, G., Rodríguez, G. E Iregui, C. (2005). Estructura histológica normal de la piel del perro (estado del arte). Revista de Medicina Veterinaria, 10,109-122
Castrillón, E. L., Ramos, A. P. y Padilla Desgarennes, C. (2008). The immune function of skin. Dermatología Revista Mexicana, 52(5), 211-224.
Chaudhary, S., et al. (2019). Alterations in circulating concentrations of IL-17, IL-31 and total IgE in dogs with atopic dermatitis. Veterinary dermatology, 5(30), 383-e114
Chénier, S. Y Doré, M. (1998). P-selectin expression in canine cutaneous inflammatory disease and mast cell tumors. Veternarian pathology, 35, 85-93
Chermprapai, S. (2019). The Immune-pathogenesis of Canine Atopic Dermatitis: Skin barrier, Microbiome and Inflammation (Doctoral dissertation, Utrecht University).
Christofidou-Solomidou, M., Murphy, J. y Albelda, S. (1996). Induction of E-selectin dependent leukocyte recruitment by mast cell degranulation in human skin grafts transplanted on SCID mice. American Journal Pathology, 148, 177-188
Dellmann, D. (1993). Histología veterinaria. 2º ed. Zaragoza: Acribia.
De Mora, F., García, G., Puigdemont, A., Arboix, M., y Ferrer, L. (1996). Skin mast cell releasability in dogs with atopic dermatitis. Inflammation research, 45(8), 424-427.
De Vinney, R. y Gold, W. (1990). Establishment of two dog mastocytoma cell lines in continuous culture. American Journal Respir Cell Molecular Biology, 3, 413-420
Di Cesare, A., Di Meglio, P. y Nestle, F. (2008). A role for Th17 cells in the immunopathogenesis of atopic dermatitis? Journal of investigative Dermatology, 128(11), 2569-2571
Ellis, C., Luger, T., Abeck, D., Allen, R., Graham, R., y De Prost, Y. (2003). International consensus conference on atopic dermatitis II (ICCAD II): clinical update and current treatment strategies. Br. Journal dermatology, 148, 3-10
Emery, D. L., Djokic, T. D., Graf, P. D. y Nadel, J. A. (1989). Prostaglandin D2 causes accumulation of eosinophils in the lumen of the dog trachea. Journal of Applied Physiology, 67(3), 959-962.
Flohr, C., Johansson, Sgo., Wahlgren, C. F. y Williams, H. (2015). How atopic is atopic dermatitis? J Allergy Clin Immunology, 114,150–158.
Fogel, F. y Manzuc, P. (2009). Dermatología canina para la práctica clínica diaria. Buenos Aires, Argentina. Intermedica
Foster, A. y Foil, C. (2012). Manual de dermatología de pequeños animales y exóticos. Segunda edición. España. Lexus.
Ganz, T. (2003). Ther role of antimicrobial peptides in innate immunity. Integral Component Biology, 43, 300-304
Hammerberg, B., Olivry, T. y Orton, S. (2001). Skin mast cell histamine release following stem cell factor and high-affinity immunoglobulin E receptor cross-linking in dogs with atopic dermatitis. Veterinary Dermatology, 12, 339-346
Hanifin, J., Cooper, K. Ho, V., Kang, S., Krafchik, B. y Margolis, D. (2004). Guidelines of care for atopic dermatitis. Journal American Academic Dermatology, 50, 391-404
Hogaboam, C., et al. W. (1998). Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. The Journal of Immunology, 160(12), 6166-6171.
Jung, K., Linse, F., Pals, S. T., Heler, R., Moths, C., y Neumann, C. (1997). Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite. Contact dermatitis, 37(4), 163-172.
Junghans, V., Gutgesell, C., Jung, T. y Neumann, C. (1998). Epidermal cytokines IL-1β, TNF-α, and IL-12 in patients with atopic dermatitis: response to application of house dust mite antigens. Journal of investigative dermatology, 111(6), 1184-1188.
Lenormand, C. y Lipsker, D. (2018). Mosaicismo. EMC- Dermatología, 52(2): 1-11
Lloyd, D. y Patel, A. (2008). Estructura y funciones de la piel. En: Manual de dermatología en pequeños animales y exóticos. Foster, A., Foil, P., Alhaidari, Z., Bensignor, E., Burrows, M., Byrne, K. y Ferguson, A. (eds.). 2º edición. Barcelona, España.
Maeda, S., et al, (2002). Expression of CC chemokine receptor 4 (CCR4) mRNA in canine atopic skin lesion. Veterinary immunology and immunopathology, 90(3-4), 145-154
Marsella, R. (2013). Fixing the skin barrier: past, present and future--man and dog compared. Vet. Dermatol, 24, 73- 6.e17-8
Matsuoka, T., et al. (2000). Prostaglandin D2 as a mediator of allergic asthma. Science, 287(5460), 2013-2017.
Miller, W., Griffin, C., y Campbell, K. (2014). Dermatología: en pequeños animales. 7º ed. Volumen 1. Buenos Aires, Argentina: Intermedica.
Monteiro, N., Stinson, A. y Calhoun, L. (1993). Integumento. En: Histología veterinaria. Delmann, D. (ed.) 2º edición. Zaragoza: Acribia, 323-352
Nahm, D., Lee, E., Park, H., Kim, H., Choi, G. y Jeon, S. (2008). Treatment of atopic dermatitis whit a combination of allergen-specific immunotherapy and a histamine-immunoglobulin complex. International Archives of Allergy and Immunology, 146(3), 235-240
Nakatani, T.,et al. (2001). CCR4+ memory CD4+ T lymphocytes are increased in peripheral blood and lesional skin from patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 107(2), 353-358.
Nesbitt, G. y Ackerman, L. (2001). Dermatología canina y felina: diagnóstico y tratamiento. Buenos Aires: Intermédica.
Novak, N. y Leung, D. Y. (2010). Pediatric Allergy: Principles and Practice (Eds Leung, D.Y. & Sampson, H.) W.B. Saunders, Edinburgh, 552-563
Nuttall, T. J., Knight, P. A., Mcaleese, S. M., Lamb, J. R. y Hill, P. B. (2002). Expression of Th1, Th2 and immunosuppressive cytokine gene transcripts in canine atopic dermatitis. Clinical & Experimental Allergy, 32(5), 789-795.
Nuttall, T., Marsella, R., Rosenbaum, M., Gonzales, A. y Fadok, V. (2019). Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. JAVMA, 254(11), 1291-1300.
Olivry, T. (2012). What can dogs bring to atopic dermatitis research. En Ring, J., Darsow, U., Behrendt, H. (Eds.). New trends in allergy and atopic eczema. Chem Immnulogy Allergy.
Olivry, T., Naydan, D. y Moore, P. (1997). Characterization of the cutaneous inflammatory infiltrate in canine atopic dermatitis. American Journal Dermatopathology, 19, 477-486
Ortega-Velazquez, R., et al. (2004). Collagen I upregulate extracellular matrix gene expression and secretion of TGF-β1 by cultured human mesangial cells. American Journal of Physiology-Cell Physiology, 286(6), C1335-C1343.
Oyoshi, M. K., He, R., Kumar, L., Yoon, J. y Geha, R. S. (2009). Cellular and molecular mechanisms in atopic dermatitis. Adv. Immunology, 102, 135-226
Paterson, S. (2009). Manual de enfermedades de la piel en perros y gatos. Segunda edición. Buenos Aires. Argentina: Intermedica.
Pierezan, F., Olivry, T. y Paps, J. (2016). The skin microbiome in allergen-induced canine atopic dermatitis. Veterinary Dermatology, 27, 332-339
Roque, J., O´Leary, C. y Kyaw-Tanner, M. (2011). PTPN22 polymorphisms may indicate a role for this gene in atopic dermatitis in West Highland White Terriers. BCM Res Notes, 4, 571-577
Santoro, D., Marsella, R. y Pucheu-Haston, C. (2015). Review: pathogenesis of canine atopic dermatitis: skin barrier and host-microorganism interaction. Veterinary Dermatology, 26, 84-94
Scott, D., Miller, W. y Griffin, C. (2001). Small animal dermatology. Saunders 6º ed. Philadelphia.
Silvestri, M., Spallarossa, D., Battistini, E., Sabatini, F., Pecora, S., Parmiani, S. y Rossi, G. (2002). Changes in inflammatory and clinical parameters and in bronchial hyperreactivity asthmatic children sensitized to house dust mites following sublingual immunotherapy. Journal of investigational allergology & clinical immunology, 12(1), 52-59.
Simou, C., Thoday, K. y Forsythe, P. (2005). Adherence of Staphylococcus intemedious to corneocytes of healthy and atopic dogs: effect of pyoderma, pruritus score, treatment and gender. Veterinary Dermatology, 16, 385- 391
Sinke, J., Thepen, T., Bihari, I., Rutten, V. y Willemse, T. (1997). Immunophenotyping of skin-infiltrating T-cell subsets in dogs with atopic dermatitis. Veterinary immunology and immunopathology, 57(1-2), 13-23
Springer, T. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76, 301-314
Teran, L. 2000. CCL chemokines and ashtma. Immunology Today, 21, 235-241
Torres, R. (2003). Expresión de moléculas proinflamatorias en modelos caninos de inflamación alérgica in vivo e in vitro. Tesis doctoral. Universitat Autónoma de Barcelona. 108pp
Toru, H., Ra, C., Yata, J. y Nakanata, T. (1998). Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. Journal Allergy Clinical Immunology, 102, 491-502
Tupker, R. A., De Monchy, J. G., Coenraads, P. J., Homanb, A., y Van Der Meer, J. B. (1996). Induction of atopic dermatitis by inhalation of house dust mite. Journal of allergy and clinical immunology, 97(5), 1064-1070.
Virga, V. (2003). Behavioral dermatology. The Veterinary clinics of North America. Small animal practice, 33(2), 231-51.
Wardlaw, A. J. (2001). Eosinophil trafficking in asthma. Clinical Medicine, 1(3), 214-218
Weese, J. (2013). The canine and feline skin micribiome in health and disease. Veterinary Dermatology, 24, 137-145
Wershil, B. K., Wang, Z. S., Gordon, J. R. y Galli, S. J. (1991). Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha. The Journal of clinical investigation, 87(2), 446-453.
Wilhem, S., Kovalik, M. y Favrot, C. (2011). Breed-associated phenotypes in canine atopic dermatitis. Vet Dermatol, 22, 143-149
Woltman, G., Mcnulty, C. y Dewson, G. (2000). IL-3 induces PSGL-1/P-selectine-dependent adhesion of eosinophils, but no neutrophils, to HUVEC under flow. Blood, 95, 3146-3152
Wood, S., Ke, X., Nuttall, T. (2009). Genome-wide association analysis of canine atopic dermatitis and identification of disease related snps. Immunogenetics, 61, 765-772
Yager, J. y Scott, D. (1993). The skin and appendages. En: Pathology of domestic animals. Jubb, K., Kennedy, P. y Palmer, N. (Eds.). Academic Press 4ª ed., San Diego.
Yano, K., Yamaguchi, M., Lantz, C, Butterfield, J., Costa, J. y Galli, S. J. (1997). Production of macrophage inflammatory protein-1alpha by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast cell IgE-binding ability. Laboratory investigation; a journal of technical methods and pathology, 77(2), 185-193.
Zimmerman, G., Mcintyre, T., Mehra, M. y Prescott, S. (1990). Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. The Journal of Cell Biology, 110(2), 529-540.