Medición del flujo de calor de hidratación en pastas de cemento portland utilizando un calorímetro de diseño propio

Authors

  • Jhonatan Alexander Becerra Duitama
  • Diana Alejandra Rojas Avellaneda

DOI:

https://doi.org/10.38017/2390058X.788

Keywords:

calorímetro, cemento, flujo de calor, hidratación

Abstract

This research work focused on the measurement of the variation in temperature and heat flow of cement pastes when hydrated, by means of a calorimeter of own design. First, the calorimeter with which the measurements were made, was manufactured. Then, the volumes were chosen, with their respective mix design, to which the measurement was made. Two samples were used, with volumes of 42 cm3 and 116 cm3, with a water/cement ratio of 0.45. Next, the temperature measurement was made during the hydration of the cement, to finally establish, through thermal and mathematical models, the evolution of heat flow. Each measurement lasted approximately 26 hours. After the measurements were taken, it was found that, at different sample volumes, the temperature varies. Similarly, it was noted that heat dissipation occurs rapidly due to the size of the sample.

 

Downloads

Download data is not yet available.

References

Abeka, H., Agyeman, S., & Adom-asamoah, M. (2017). Thermal effect of mass concrete structures in the tropics : Experimental , modelling and parametric studies. Cogent Engineering, 94(1), 1–18. https://doi.org/10.1080/23311916.2016.1278297

Alhozaimy, A., Fares, G., & Alawad, O. A. (2015). Heat of hydration of concrete containing powdered scoria rock as a natural pozzolanic material. Construction and Building Materials, 81, 113–119. https://doi.org/10.1016/j.conbuildmat.2015.02.011

ASTM Internacional. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry 1 (2009).

Boubekeur, T., Ezziane, K., & Kadri, E. (2017). Quantification and analysis of heat hydration of blended cement at different temperature. Journal of Adhesion Science and Technology, 4243(May), 16. https://doi.org/10.1080/01694243.2017.1325557

Cengel, Y. A. (2004). Transferencia de Calor (Segunda ed).

DANE. (2019). Boletín Técnico: Estadísticas de cemento gris (ECG). Bogotá D.C. Devore, J. L. (2008). Probabilidad y estadística para ingeniería y ciencias (Séptima Ed).

CENGAGE Learning.

Emo, C., & Solaro, R. (2003). Biodegradable polymers and plastics. Pisa.

Fernández Cánovas, M. (2013). HORMIGÓN (10th ed., pp. 53–57). Madrid, España.

ICONTEC. Cemento pórtland. Clasificación y nomenclatura, Pub. L. No. NTC 30, 2 (1996). Colombia.

Jansen, D., Goetz-neunhoeffer, F., Lothenbach, B., & Neubauer, J. (2012). The early hydration of Ordinary Portland Cement ( OPC ): An approach comparing measured heat fl ow with calculated heat fl ow from QXRD. Cement and Concrete Research, 42(1), 134–138. https://doi.org/10.1016/j.cemconres.2011.09.001

KSoftware. (2017). Realterm: Serial Terminal. Retrieved from https://realterm.sourceforge.io/

Lin, Y., & Chen, H. (2015). Thermal analysis and adiabatic calorimetry for early-age concrete members. Journal of Thermal Analysis and Calorimetry, 122(2), 937–945. https://doi.org/10.1007/s10973-015-4843-2

Lodewicus Schoeman, J. (2016). A model for temperature control in concrete dams.

Stellenbosch.

Martínez Bencardino, C. (2012). Estadística y muestreo (Décimo ter). Bogotá D.C: ECOE EDICIONES.

Maxim Integrated. (2018). DS18B20 Programmable Resolution 1-Wire Digital Thermometer.

Miretzky, B. (1946). Determinación del calor de hidratación de los cementos argentinos con calorímetro adiabático. Universidad de Buenos Aires.

Ramu, Y. K., Akhtar, I., & Santhanam, M. (2016). Use of adiabatic calorimetry for performance assessment of concretes. Advances in Cement Research, 28(8), 485–493. https://doi.org/http://dx.doi.org/10.1680/jadcr.15.00097

Riding, K. A., Poole, J. L., Folliard, K. J., Juenger, M. C. G., & Schindler, A. K. (2013).

Modeling Hydration of Cementitious Systems. ACI Materials.

Rivera, G. A. (2013). Concreto simple. Cauca.

Scrivener, K. L., & Nonat, A. (2011). Cement and Concrete Research Hydration of cementitious materials , present and future. Cement and Concrete Research, 41(7), 651–665. https://doi.org/10.1016/j.cemconres.2011.03.026

Sears Weston, F., & Salinger, G. L. (2007). Termodinámica, teoría cinpetica y termodináica estadística. (Editorial Reverte, Ed.) (Segunda Ed).

Springenschmid, R. (1998). AVOIDANCE OF THERMAL CRACKING IN CONCRETE

AT EARLY AGES. Materials and Structures, 30(October 1997), 451–464.

Tarasov, A. S., Kearsley, E. P., Kolomatskiy, A. S., & Mostert, H. F. (2010). Heat evolution due to cement hydration in foamed concrete. Magazine of Concrete Research, (March 2015), 895–906. https://doi.org/10.1680/macr.2010.62.12.895

The global cement report. (2018) (12th ed.). International Cement Review’s.

Triola, M. F. (2013). Estadística (Decimoprim). México: PEARSON EDUCACIÓN S.A.

Volfová, P., Cern, R., Tydlitát, V., & Zákoutsk, J. (2012). Hydration heat development in blended cements containing fine-ground ceramics. Thermochimica Acta, 543, 125– 129. https://doi.org/10.1016/j.tca.2012.05.022

Wang, K., Ge, Z., Grove, J., Ruiz, M. J., & Rasmussen, R. (2006). Developing a Simple and Rapid Test for Monitoring the Heat Evolution of Concrete Mixtures for Both Laboratory and Field Applications.

Published

2024-03-26

How to Cite

Becerra Duitama, J. A., & Rojas Avellaneda, D. A. (2024). Medición del flujo de calor de hidratación en pastas de cemento portland utilizando un calorímetro de diseño propio. Science, Innovation and Technology Journal, 4, 16–35. https://doi.org/10.38017/2390058X.788

Issue

Section

Artículo de Investigación Científica y Tecnológica