Metodos de analísis químico para la detección de la 4-metilmetcatinona (mefedrina), desde una perspectiva farmacológica y toxicológica

Autores/as

  • Diego Hernando Ángulo Florez Fundación Universitaria Juan de Castellanos
  • Edna Carolina Cipagauta Esquivel Universidad de Boyacá

DOI:

https://doi.org/10.38017/1657463X.686

Palabras clave:

Catinona, Mefedrina, 4-metilmetcatinona, Farmacología, Toxicología

Resumen

En los últimos 25 años en Europa, han surgido nuevas drogas sintéticas derivadas de la planta de khat (Catha edulis), denominadas Catinonas, que es un alcaloide muy potente análogo a las anfetaminas. Entre los derivados de la catinona se encuentra la mefedrina (4-metilmetcatinona (4-MMC)), que tiene efectos farmacológicos equivalentes a los reportados por el éxtasis, las anfetaminas o la cocaína. El presente artículo presenta una revisión exhaustiva de la literatura referente a los principales métodos de detección de la 4-MMC conocida como mefedrona, además de presentar las propiedades fisicoquímicas, farmacológicas, toxicológicas y los principales efectos nocivos para la salud. Es de particular interés y preocupación que este medicamento derivado de la efedrina provenga de una planta y se considere legal en algunos países de Europa occidental. Ha sido ampliamente utilizado en los últimos años con fines recreativos en varios países de Europa, América del Norte y la mayoría de los países de América del Sur debido a su facilidad de compra y por ser una nueva alternativa al éxtasis y la cocaína. Los efectos de la 4-MMC están asociados con efectos estimulantes, como aumento de la concentración, estimulación psicomotora, reducción del apetito e insomnio. Estudios recientes han descrito que el uso compulsivo de mefedrona es principalmente un fenómeno juvenil y entre los efectos secundarios más peligrosos se encuentran la adicción intensa, los cambios bruscos de la temperatura corporal y la frecuencia cardíaca, las alucinaciones, la psicosis y la muerte por sobredosis. Con base en lo anterior, es esencial que las revisiones de la literatura se centren en la química, la farmacología, la toxicología y el análisis de riesgos para la mefedrona, para encontrar estrategias para la determinación rápida y mitigar sus efectos adversos en los adictos, así como evitar el consumo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diego Hernando Ángulo Florez, Fundación Universitaria Juan de Castellanos

Licenciado en Química con énfasis en análisis químico instrumental. Magíster en Docencia de la Química. Doctor en Química de la Universidad Federal de São João del-Rei, por el programa multicéntrico en química de Minas Gerais-Brasil, bolsista (becario) por la OEA del programa BRACOL del grupo COIMBRA para la cooperación de América Latina.

Edna Carolina Cipagauta Esquivel, Universidad de Boyacá

Química de alimentos, Magíster en Química Orgánica por el programa multicéntrico en química de Minas Gerais-Brasil, bolsista (becaria) de la Rede Mineira de Química-UFSJ, Universidad Federal de São João del-Rei. Docente universitaria que enfoca la educación y la enseñanza en la interdisciplinariedad en contexto, la integralidad con otras disciplinas y la resolución de problemas mediante los niveles de abertura.

Citas

Adamowicz, P., Tokarczyk, B., Stanaszek, R., & Slopianka, M. 2013. Fatal mephedrone intoxication – cla case report. Journal of Analytical Toxicology (37): 37–42.

Adamowicz, P., Gieroń, J., Gil, D., Lechowicz, W., Skulska, A., & Tokarczyk, B. 2016a. The prevalence of new psychoactive substances in biological material - a three-year review of casework in Poland. Drug Test. Anal. 8 (1): 63−70.

Adamowicz, P., Gieroń, J., Gil, D., Lechowicz, W., Skulska, A., Tokarczyk, & B., Zuba, D. 2016b. Blood concentrations of α-pyrrolidinovalerophenone (α-PVP) determined in 66 forensic samples. Forensic Toxicol. (34): 227–234.

Adamowicz, P., & Malczyk, A., 2019. Stability of synthetic cathinones in blood and urine. Forensic Sci Int. 295, 36−45.

Anneken J. H, Angoa-Pérez M, & Kuhn D. M. 2015. 4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: b-ketoamphetamine modulation of neurotoxicity by the dopamine transporter. Journal of Neurochemistry (113): 211–222.

Archer, R. 2009. Fluoromethcathinone, a new substance of abuse. Forensic Science International. (185): 10-20.

Bahuman, M. H., Ayestas, M. A., Partilla, J. S., Sink, J. R., Daley, P. F., Brandt, S. D., & Richard B Rothmanl. 2012. The Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue. Neuropsychopharmacology (37): 1192–1203.

Barrio, P., Gaskell, M., Goti, J., Vilardell, S., & Fàbregas, J. M. 2016. Persistent psychotic symptoms after long-term heavy use of mephedrone: A two-case series. adicciones 28 (3): 154-158.

Brandt, S., Sumnall, H., Measham, F., & Cole, J. 2016. Analyses of second-generation 'legal highs' in the UK: initial findings. Drug Testing and Analysis (37): 377-382.

Busardo, F. P., Kyriakou, C., Tittarelli, R., Mannocchi, G., Pantano , F., Santurro , A., & Baglı`o, G. 2015. Assessment of the stability of mephedrone in ante-mortem and post-mortem blood specimens. Forensic Science International (256): 28–37.

Camilleri, A., Johnston, M. R., Brennan, M., Davis, S., & Caldicott, D. G. 2010. Chemical analysis of four capsules containing the controlled substance analogues 4-methylmethcathinone, 2-fluoromethamphetamine a-phthalimidopropiophenone and N-ethylcathinone. Forensic Science International (196): 59-66.

Carhart-Harrist, R. I., King, L. A., & Nut, D. J. 2011. A web-based survey on mephedrone. Drug and Alcohol Dependence (118): 19-22.

Christie, R., Horan, E, Fox, J., O'Donnell, C., Byrne, H.J., McDermott, Power, J. S.& Kavanagh, P. 2014. Discrimination of cathinone regioisomers, sold as 'legal highs', by

Raman spectroscopy, Drug Test Anal 6 (7-8): 651-657.

Dargan, P. L., Sedefov, R., Gallegos, A., & Wood, D. M. 2011. The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Testing and Analysis, (3): 454-463.

Dick, D., & Torrance, C. 2010. Drugs Survey. MixMag (8): 225-244.

Dickson, A. J., Vorce, S. P., Levine, B., & Past, M. R. 2010. Multiple-drug toxicity caused by the coadministration of 4-methylmethcathinone (mephedrone) and heroin. Journal of Analytical Toxicology (34): 162–168.

EMCDDA. 2017. EMCDDA – Drug Profiles: Synthetic Cathinones. Available at: http://www.emcdda.europa.eu/publications/drug-profiles/synthetic-cathinones.
Eshleman, A., Wolfrum KM, Hatfield, M., Johnson, R., Murphy, K., & Janowsky, A. 2013. Substituted methcathinones differ in transporter and receptor interactions. Biochemical Pharmacology (85):
1803–1815.

EMCDDA. 2017. Report on the risk assessment of mefedrona in the framework of the Council Decision on new psychoactive substances. Berlin: Publications office of the European Union. Obtenido de http://www.emcdda.europa.eu/html.cfm/index116639EN.htm

EMCDDA. 2016. joint report on a new psychoactive substance: 4-methylmethcathinone (mephedrone). http://www.emcdda.europa.eu/attachements.cfm/att_102496_EN_Europol-EMCDDA_Joint_Report_Mephedrone.pdf, 1-3.

EWS: Early warning system. (2011). http://www.emcdda. europa.eu/themes/new-drugs/early-warning .

Ferreira, C., Vaz, A. R., Florindo, P. R., Lopes, Á., Brites, D., & Quintas, A. 2019. Development of a high throughput methodology to screen cathinones toxicological impact. Forensic Science International, (169): 1-9.

Fisher, D., Partridge, S. J., Handley, S. A., & Flanagan, R. J. 2013. Stability of some atypicalantipsychotics in human plasma, haemolysed whole blood, oral fluid, human serum and calf serum. Forensic Science International (229): 151–156.

Fleminng N. 2016. newscientist. Obtenido de Miaow-miaow on trial: truth or trumped-up charges?:ttp://www.newscientist.com/article/dn18712-miaowmiaow-on-trial-truth-or-trumpedup-charges.html,.

Freni, F., Bianco , S., Vignali, C., Groppi, A., Moretti, M., Marco, A. & Morini, L. 2019. A multi-analyte LC–MS/MS method for screening and quantification of 16 synthetic cathinones in hair: Application to postmortem cases. Forensic Science International, (298): 115-120.

Fukushima, S., Shen, H., Hata, H., Ohara, A., Ohmi, K., Ikeda, K. & Uhl, G. 2007. Methamphetamine-induced locomotor activity and sensitization in dopamine transporter and vesicular monoamine transporter 2 double mutant mice. Psychopharmacology (193): 55–62.

Gibbons, S. & Zloh, M. 2010. An analysis of the ‘legal high’ mephedrone. Bioorganic & Medicinal Chemistry Letters (20): 4135–4139.

Glickstein, S., & Schmauss, C. 2004. Effect of methamphetamine on cognition and repetitive motor behavior of mice deficient for dopamine D2 and D3 receptors. Annals of the New York Academy of Sciences (1025): 110–118.
Glicksberg, L. & Kerrigan, S. 2017. Stability of Synthetic Cathinones in Blood. J. Anal. Toxicol. (41): 711–719.

Glicksberg, L. & Kerrigan, S. 2018. Stability of Synthetic Cathinones in Urine. J. Anal. Toxicol. (42): 77–87.

Gygi, M., Gibb, J., & Hanson, G. 1996. Methcathinone: an initial study of its effects on monoaminergic systems. Journal of Pharmacology and Experimental Therapeutics (3): 1066–1072.
H. Torrance, 2010. The detection of mephedrone (4-methylmethcathinone) in 4 fatalities in Scotland. Forensic Science International,. (10): 62-63.

Jankovics, P., Varadi, A., Tolgyesi, L., Lohner, S., Nemeth-Palotas, J., & Koszegi-Szalai, H. 2012. Identification and characterization of the new designer drug 40-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography–tandem mass spectrometry (LC–MS/MS) screening method for seven different methcathinone analogs. Forensic Science International,(3): 213-220.

Jones, L., Reed, P., & Parrott, A. 2016. Mephedrone and 3,4-methylenedioxymethamphetamine: Comparative psychobiological effects as reported by recreational polydrug users. Journal of Psychopharmacology, 30 (12): 1313-1320.
Kapitány-Fövény, M., Kertész, M., Winstock, A., Deluca, P., & Corazza, O. 2013. Substitutional potential of mephedrone: an analysis of the subjective effects. Human Psychopharmacology: Clinical and Experimental (28): 308–316.
Kavanagh, P., O’Brien, J., Power, J. D., & Talbot, B. 2013. ‘Smoking’ mephedrone: The identification of the pyrolysis products of 4-methylmethcathinone hydrochloride. Drug Testing and Analysis (5):291–305.

Kehr, J., Ichinose, F., Yoshitake, S., Goiny, M., Sievertsson, T. & Nyberg, F. 2011. Mephedrone, compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and serotonin levels in nucleus accumbens of awake rats. British Journal of Pharmacology, 164 (8): 1949-1958.

Kelly J. P. 2011. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Testing and Analysis (3): 439-435.

Levitas, M.P., Andrews, E., Lurie, I., Marginean, I., 2018. Discrimination of synthetic cathinones by GC-MS and GC-MS/MS using cold electron ionization. Forensic Sci. Int. (288): 107–114.

Linharta, I., Himla, M., Židková, M., Balíková, M., Lhotkovác, E., & Pálenícek, T. 2016. Metabolic profile of mephedrone: Identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II Metabolites. Toxicology Letters, (204): 54.62.

Lisek, R., Xu, W., Yuvasheva, E., Chiu, Y., Reitz, A., Liu-Chen, L. & Rawls, S. 2014. Mephedrone (‘bath salt’) elicits conditioned place preference and dopaminesensitive motor activation. Drug and Alcohol Dependence, (3): 257-262.

López-Rabuñala, Á., Lendoiro, E., Concheiro, M., López-Rivadulla, M., Cruz, A., & de-Castro-Ríos, A. (2019). A LC-MS/MS method for the determination of common synthetic cathinones in meconium. Journal of Chromatography B, (5): 349-355.

Martinez-Clemente, J., Escubedo E, Pubill. & Camarasa. 2012. nteraction of mephedrone with dopamine and serotonin targets in rats. European Neuropsychopharmacology 3 (22): 231-236.

Martınez-Clemente, J., Lopez-Arnau, R., Abad, S., Pubill, D., Escubedo, E., & Camarasa, J. 2014. Dose and Time-Dependent Selective Neurotoxicity Induced by Mephedrone in Mice. Plos One (50): 1-11.

Mercieca, G., Odoardi, S., Cassar, M., & Strano Rossi, S. (2018). Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, (149): 494-501.

Meyer, M. R., Wilhelm, J., Peters, F. T. & Maurer, H. H. 2013. Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 3 (397): 1225-1233.

Meyer M. R & Maurer H. H. 2010. Metabolism of designer drugs of abuse: an updated review. Current Drug Metabolism 11 (5): 468-482.

Mori, T., Ito, S., Kita, T. & Sawaguchi, T. 2007. Effects of dopamine- and serotoninrelated compounds on methamphetamine-induced self-injurious behavior in mice. Journal of Pharmacological Sciences (96): 459–464.

Newman, J., He, W., & Verdin, E. 2012. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. Journal of Biological Chemistry (287): 42436–42443.

Pedersen, L., Johansen, S. S. & Linnet, K. 2015. In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Testing and Analysis, (1): 3-6.

Power M. 2010. How mephedrone shook the drug trade. Obtenido de http://www.drugscope.org.uk/Resources/Drugscope/Documents/PDF/Good%20Practice/DruglinkJanFeb10.pdf,

Power, J. D., Kavanagh, P., McLaughlin, G., O’Brien, J., Talbot, B., Barry, M. & Brandt, S. D. 2015. Identification and characterization of an imidazolium by-product formed during the synthesis of 4-methylmethcathinone (mephedrone). Drug Testing and Analysis (7): 894-902.

Power, P. McGlynn, K. Clarke, S.D. McDermott, P. Kavanagh & J. O'Brien (2011), The analysis of substituted cathinones. Part 1: chemical analysis of 2-, 3- and 4-methylmethcathinone, Forensic Sci Int 212(1-3): 6-12.

Pozo, O., Ibáñez, M., Sancho, J., Lahoz-Beneyetez, J. & Papaseit, M. 2015. Mass spectrometric evaluation of mephedrone in vivo human metabolism: identification of phase I and phase II metabolites including a novel succinyl conjugate. Drug Metabolism and Disposition (43): 248–257.

Razavipanah, I., Alipour, E., Deiminiat, B., & Hossein Rounaghi, G. 2018. A novel electrochemical imprinted sensor for ultrasensitive detection of the new psychoactive substance “Mephedrone”. Biosensors and Bioelectronics, (119): 163-169.

Schifano, F., Albanese, A., Fergus, S., Stair, J. L., Deluca, P., Corazza, O. & Ghods, H. 2011. Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (214): 593-602.

Shortall, Spicer, C., Ebling, F., Green, A., Fone, K. & King, N. 2016. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addiction Biology (21): 1127–1139.

Simmler L. D 2013. Pharmacological characterization of designer cathinones in vitro. British Journal of Pharmacology (168): 458–470.

Sparago, M., Wlos J, Yuan J, Hatzidimitriou G, Tolliver J, & Dal Cason, T. A. 2001. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. Journal of Pharmacology and Experimental Therapeutics (279): 1043–1052.

Strano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar G., Serpelloni,G. & Romolo, F.S, 2014 An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials, Rapid Commun Mass Spectrom 28(17): 1904-1916.

Swortwood, M.J., Boland, D.M. & DeCaprio, A.P., 2013. Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-Q-MS/MS analysis. Anal. Bioanal. Chem. 405 (4): 1383–1397.

Torrance, G. C. 2010. The detection of mephedrone (4-methylmethcathinone) in 4 fatalities in Scotland. Forensic Science International (13): 62-63.

Vardakou, I., Pistos, C., & Spiliopoulou, C. 2011. Drugs for youth via Internet and the example of mephedrone. Toxicology Letters (211): 191-195.

Winstock, A., Mitcheson, L., & Marsden, J. 2010. Mephedrone: still available and twice the price. The Lancet, (9752): 376-1537.

Winstock, A. R., Mitcheson, L. R., Deluca, P., Davey, Z., Corazza, O., & Schifano, F. 2010. Mephedrone, new kid for the chop? Addiction (106): 154–161.

Wood, D. M., Susannah, D., Puchnarewicz, M., Button, J., Archer, R., Ovaska, H. & Dargan, P. I. 2017. Recreational Use of Mephedrone (4-Methylmethcathinone, 4-MMC) with Associated Sympathomimetic Toxicity. Journal of Medical Toxicology (6): 327-330.

Zuba, D. & Adamowicz, P. 2016 Distinction of constitutional isomers of mephedrone by chromatographic and spectrometric methods, Aust J Forensic Sci 49(6): 1-13.

Descargas

Publicado

2020-12-14

Cómo citar

Ángulo Florez, D. H., & Cipagauta Esquivel, E. C. (2020). Metodos de analísis químico para la detección de la 4-metilmetcatinona (mefedrina), desde una perspectiva farmacológica y toxicológica. Cultura Científica, 1(18), 95–120. https://doi.org/10.38017/1657463X.686

Número

Sección

Artículo de Investigación Científica y Tecnológica