Keywords:
Genetic Algoritms, Diffuse Logic, Control, CloningAbstract
Genetic Algorithms are adaptive procedures to the search of solutions in complex spaces, inspired by biological evolution, with operations patterns based on the individuals' reproduction and survival Darwinian's principle of those who adapt better to the environment in which they live. This article develops a study of the Genetic Algorithms and the Diffuse Logic, to develop a proposed methodology and to reply the black box of a controller, using procedures of collecting the set of inference rules, diffuse cluster, and later to apply the simple genetic algorithm development with some alterations, looking for the objective of the proposed work.
Downloads
References
COELLO, C. (2004). Introducción a la Computación Evolutiva. México. CINVESTAV-IPN, Departamento de Ingeniería Eléctrica.
DARWIN, Charles R. (1964). On the Origin of Species by Means of Natural Selection Or the Preservation of Favoured Races in the Struggle for Life. Cambridge University Press, Cambridge, UK, sixth edition. Originally published in 1859.
DELGADO, A. (1998). Inteligencia Artificial y Minirobots. 1 ed. Ecoe ediciones. 309 p.
GOLDBERG, D. (1989). Genetic Algorithms in Search, Optimization and Machina Learning. Addison-Wesley Publishing Co., Reading, Massachusetts.
MUÑOZ, A. (1985). Tecnología de Control con Análisis Instrumental ON-LINE. Moa Cuba, 160 p. Trabajo de grado (Ph.D. Ciencias Técnicas), Universidad de Acero y Aleaciones, Moscú Rusia. Facultad Metalurgia y Electromecánica, Programa- Doctorado en Control y Automatización Industrial.
MUÑOZ, A. y PARDO A. (2003). Tecnologías de control avanzado y de Clonación artificial aplicada a sistemas Mecatrónicos de alta precisión. IEEE Intelligent Control Houston, Texas.
ZADEH, L. (1965). Fuzzy sets. Information and Control, 8:338-353.