Keywords:
Date, information, knowledge, data mining and meteorology.Abstract
The region from Boyacá is not aside from the negative effects of the climate change which generate problems to the agriculture, economic sector that receives the biggest impact. For that reason it is urgent to develop the Agrometeorological Prediction (PA), in order to adopt measures that allow to reduce the vulnerability of the sector before icy, long periods of summer or rains, etc.. In this context, the Group of Artificial intelligence of the University Juan of Castellanos GIA-JDC, outlines this scientific project to improve the precision of the agrometeorological indicators by means of the development of a methodology that includes Artificial intelligence techniques (data Mining, diffuse logic and genetic algorithms). This article shows the first phase of the work, trying to expose where, how and when to apply the most outstanding theory in the obtaining of knowledge and its incidence in the proposed methodology for the investigation development.
Downloads
References
•PYLE, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann.
•FAYYAD, et al. (1996). Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press.
•IAN H. WITTEN & EIBE FRANK. (1999). Data Mining: Practical Maching Learning Tools and Techniques with java implementations. Morgan Kaufmann.
•Organización Meteorológica Mundial. (2004). Servicios de Información y Predicción del Clima (SIPC) y Aplicaciones Agrometeorológicas para los Países Andinos. Actas de la Reunión Técnica llevada a cabo en Guayaquil, Ecuador, del 8 al 12 de diciembre de 2003. Ginebra: Organización Metereológica Mundial. Consultada el 20 de febrero/07.